
OpTiMSoC User Guide

September 2, 2016

Document Changes

2016.1

• Switched to FuseSoC-based build system

• Merged our own debug infrastructure with Open SoC Debug

• Port the basic 2x2 example to the Nexys 4 DDR board

• Adjust the tutorial and the installation instructions.

2015.1

• Fresh restart with package-based installation (S. Wallentowitz)

• Update old tutorials (S. Wallentowitz)

• Extend tutorial for FPGA (P. Wagner and S. Wallentowitz)

June 20, 2013

• Add installation and con�guration description (S. Wallentowitz)

• Update old tutorials (S. Wallentowitz)

• Add host so�ware (GUI) in tutorials (S. Wallentowitz)

• Add development tutorials (P. Wagner)

January 28, 2013

• Initial version of the document

• First tutorial steps for distributed memory systems

OpTiMSoC Documentation Overview

�e OpTiMSOC documentation is organized in four di�erent categories:

User Guide �e User Guide describes the general usage of the OpTiMSoC elements in a tu-
torial style. It covers the basic building processes and how to get stu� running. �e
User Guide is related to releases and distributed via the website and can be built in the
repository.

API documentation �e so�ware components are documented using Doxygen1. �e gener-
ated API documentations serve the users when programming so�ware for OpTiMSoC.

1http://www.doxygen.org

i

http://www.doxygen.org

�e API documentation is also related to releases and can be automatically generated in
the repository and are also distributed via the website. At the moment the following API
documentation is available:

• OpTiMSoC Baremetal Libraries API
• OpTiMSoC gzll Libraries API
• OpTiMSoC Host So�ware API
• OpTiMSoC SystemC Library

Reference Manual �e Reference Manual covers all topics in detail. It gives a be�er insight
in how OpTiMSoC is organized and how things work. It primarily serves developers as
source of information when extending OpTiMSoC.

Technical Reports �e Technical Reports are released separately and cover implementation
details. �ey therefore serve as documentation of components and source of information
for developers. �ey do not only cover technical details butmost importantly also present
why something works as it does.

ii

Contents

1 Introduction 1

2 Installation & Configuration 3
2.1 Prerequisites . 3
2.2 Option 1: Install the OpTiMSoC binary distribution (recommended) 3
2.3 Option 2: Build OpTiMSoC from sources . 4

2.3.1 Prerequisites . 5
2.3.2 Get the sources . 5
2.3.3 Build the code . 5
2.3.4 Install the code . 5

3 Tutorials 7
3.1 Starting Small: Compute Tile and Embedded So�ware (Simulated) 7
3.2 See the Waves . 9
3.3 Going Multicore: Simulate a Multicore Compute Tile 9
3.4 Tiled Multicore SoC: Simulate a Small 2x2 Distributed Memory System 11
3.5 Observing So�ware During Execution: �e Debug System 12
3.6 Automating System Interaction . 16
3.7 Our SoC on an FPGA . 16

3.7.1 Prerequisites: FPGA board and Vivado 16
3.7.2 Programming the FPGA . 17
3.7.3 Connecting . 17
3.7.4 Running So�ware . 18

4 Develop OpTiMSoC 19
4.1 Building Hardware . 19
4.2 Choosing an Editor/IDE . 20

4.2.1 Eclipse . 21
4.2.2 Emacs . 22
4.2.3 Verilog-mode . 23
4.2.4 Qt Creator for GUI Development . 24

iii

1 Introduction

Open Tiled Manycore System-on-Chip (OpTiMSoC) is library-based framework that allows
you to build you own Manycore. So called “Tiled Manycores” are based on a regular Network-
on-Chip to which di�erent tiles are connected. Such tiles can contain processing elements,
memory, I/O devices etc.
OpTiMSoC is based on LISNoC, an open source Network-on-Chip and other open source

hardware components. In future, this set of components will be continuously extended and
you can easily integrate your own components. A variety of target platforms, such as FPGA
boards, emulation platforms and simulations will be supported.
For a general introduction about the project goals and elements of OpTiMSoC please refer

to our permanently updated preprint on ArXiv.org1.

�is document documents the projects from a user point of view. Starting with the de-
scription of how to get and install OpTiMSoC it describes the di�erent kinds of simulation or
syntheses systems currently supported by OpTiMSoC in the style of step-by-step tutorials.
In the following, we will give you a short overview of the di�erent components that are part

of OpTiMSoC or other dependencies.

OpTiMSoC Toolchain

�e toolchain of OpTiMSoC currently consists of the standard OpenRISC crosscompiler and a
newlib libc port (based on the OpenRISC newlib) plus a few small utility programs and scripts.
You will need to have it installed in most cases as it is necessary to build all the so�ware

running on the OpTiMSoC systems.

SoC Libraries

�e system libraries provide all functionalities of the OpTiMSoC platforms to the applications.
�is includes hardware drivers, runtime support, communication APIs and task management
APIs.

RTL Simulation

In case you are developing hardware in OpTiMSoC, RTL simulation is the starting point of
development. Beside this, RTL simulation is used to execute small pieces of so�ware for testing
or development of drivers and the runtime system.
Unfortunately, we do not know of any high-quality open source RTL simulation tool, so that

we here rely on commercial EDA tools. At the moment this is Mentor’s Modelsim.

1http://arxiv.org/abs/1304.5081

1

http://arxiv.org/abs/1304.5081

Verilator

Verilator is an open source tool that compiles Verilog code to SystemC and allows users without
a commercial RTL simulator license to run system simulations.

Synthesis

Currently we focus on FPGA synthesis for Xilinx FPGA.�ere will always be a supported board
that can be used with the free Xilinx WebPack, but in general you will of course need a Xilinx
license for this.
Beside Xilinx tools, we also support Synopsys Synplify as this a more sophisticated synthesis

tool.

Host So�ware

Host so�ware is needed for control and diagnosis/debug of the running systems.

Host GUI

A graphical user interface provides easy control and observability of the running systems.

2

2 Installation & Configuration

Before you get started with OpTiMSoC you should notice that external tools and libraries might
be required that are in some cases proprietary and cost some money. Although OpTiMSoC is
developed at an university with access to many EDA tools, we aim to always provide tool �ows
and support for open and free tools, but especially when it comes to synthesis such alternatives
are even not available.

2.1 Prerequisites

�roughout this document some packages are required in your Linux distribution. OpTiMSoC
should principally work on all common Linux distributions. In case you encounter problems
in your system we highly encourage you to contact the OpTiMSoC maintainers to �x these
problems. Nevertheless, we recommend Ubuntu 14.04 LTS as development system and can
ensure OpTiMSoC will work on it as we also work on it. In the following we will refer to
Ubuntu/Debian commands to install packages, that will run under Ubuntu 14.04 LTS.
Independent of the OpTiMSoC components you plan to use, you will need some packages

to be installed:

sudo apt -get -y install git build - essential tcl libusb -1.0 -0 - dev \
libboost -dev libelf -dev swig python3 python3 -yaml

optional , but highly recommended : a waveform viewer
sudo apt -get -y install gtkwave

2.2 Option 1: Install the OpTiMSoC binary distribution
(recommended)

�e most simple way to get started is with the release packages. You can �nd the OpTiMSoC
releases here: https://github.com/optimsoc/sources/releases. With the release you
can �nd the distribution packets that can be extracted into any directory and used directly
from there. �e recommended default is to install OpTiMSoC into /opt/optimsoc. �ere are
two packages: the base package contains the programs, libraries and tools to get started. �e
examples package contains prebuilt verilator simulations for the real quick start.
For example take the 2016.1 release and download both base and examples. �en create

the base folder and extract the package:

sudo mkdir /opt/ optimsoc
sudo chown $USER /opt/ optimsoc

3

https://github.com/optimsoc/sources/releases

tar -xzf optimsoc -2016.1 - base.tgz -C /opt/ optimsoc
tar -xzf optimsoc -2016.1 - examples .tgz -C /opt/ optimsoc

You can now use the installation a�er se�ing the environment with the pre-installed envi-
ronment source script:

cd /opt/ optimsoc /2016.1
source optimsoc - environment .sh

We encourage you to put this code into your ˜/.bashrc.
Now you are near to get started, but you need some programs to build so�ware to run in

OpTiMSoC and execute the verilator-based simulations. �ose are: the or1k-elf-multicore
toolchain and Verilator. All those tools are free, but are (except for an outdated Verilator
version) not part of the Linux package systems. Hence you need to built those tools as described
in the Reference Manual, or you can simply download some prebuilt-versions.
To do so simply run a script for your version:

wget https :// raw. githubusercontent .com/ optimsoc / prebuilts / master /
↪→ optimsoc -prebuilt - deploy .py

chmod a+x optimsoc -prebuilt - deploy .py
./ optimsoc -prebuilt - deploy .py -d /opt/ optimsoc verilator or1kelf

You may of course leave out any of the tools if you already have it installed. Finally, you will
get another source script to set up the environment for the prebuilt tools:

source /opt/ optimsoc / setup_prebuilt .sh

We recommend to put this line into your ˜/.bashrc �le as well.
You are now ready to go to the tutorials in Chapter 3.

2.3 Option 2: Build OpTiMSoC from sources

You can also build OpTiMSoC from the sources. �is options usually becomes standard if you
start developing for or around OpTiMSoC. �e build is done from one git repository: https:
//github.com/optimsoc/sources.
It is generally a good idea to understand git, especially when you plan to contribute to Op-

TiMSoC. Nevertheless, we will give a more detailed explanation of how to get your personal
copies of OpTiMSoC and (potentially) update them.
�e start of a successful built is to install the tools Verilator and the or1k-elf-multicore

toolchain. �e most simple way is to start with the prebuilt tools as described above, then set
the environment for the tools.

Note

During the installation, you’ll frequently encounter three types of directories.

• �e source directory. �is is the place where the uncompiled source code �les are

4

https://github.com/optimsoc/sources
https://github.com/optimsoc/sources

stored. Usually, that is the folder that you cloned from the git repository.
�e $OPTIMSOC_SOURCE environment variable should point to the root of the source
directories.

• �e build or object directory. For di�erent components such a directory is used
to build the component. �e installer performs the build process in these directories
and you perform individual builds there if you develop for OpTiMSoC (for example:
if you develop the libraries).
Sometimes, this directory is equal to the source directory, but most of the time, we
create a new directory called build inside the source directory. Doing so has a
great bene�t: if something in the build process went wrong, you can simply delete
the build directory and start all over again.

• �e installation directory. �is is the target directory where results of the build
process are stored for further use. It is used by the installer or you when running
make install to store the �les generated by the build process. �e environment
variable $OPTIMSOC points to the root of the installation directory.

2.3.1 Prerequisites

You will need some programs to build OpTiMSoC, e.g., on Ubuntu 14.04:

sudo apt -get install autoconf automake libtool tcl texlive texlive -latex -
↪→ extra texlive -fonts -extra

2.3.2 Get the sources

Start with checking out the repository:

git clone https :// github .com/ optimsoc / sources .git optimsoc - sources
cd optimsoc - sources

2.3.3 Build the code

OpTiMSoC contains a Make�le which controls the whole build process. Building is as simple
as calling (inside the top-level source directory)

make

2.3.4 Install the code

To install OpTiMSoC to the default location in /opt/optimsoc/VERSION it’s su�cient to run

sudo make install

5

You can also modify the target directory using environment variables passed to make. �is
is especially useful if you don’t have enough permissions to write to /opt/optimsoc.

• Use INSTALL_PREFIX to change the installation pre�x from /opt/optimsoc to some-
thing else. �e installation will then go into INSTALL_PREFIX/VERSION.

• Use INSTALL_TARGET to fully override the installation path. �e installation will then
go exactly into this directory.

recommended option : use INSTALL_PREFIX
make install INSTALL_PREFIX =˜/ optimsoc

full control for special cases: use INSTALL_TARGET
make install INSTALL_TARGET =˜/ optimsoc - testversion

6

3 Tutorials

�e best way to get started with OpTiMSoC a�er you’ve prepared your system as described
in the previous chapter is to follow some of our tutorials. �ey are wri�en with two goals
in mind: to introduce some of the basic concepts and nomenclature of manycore SoC, and to
show you how those are implemented and can be used in OpTiMSoC.
Some of the tutorials (especially the �rst ones) build on top of each other, so it’s recom-

mended to do them in order. Simply stop if you think you know enough to implement your
own ideas!

3.1 Starting Small: Compute Tile and Embedded So�ware
(Simulated)

It is a good starting point to simulate a single compute tile of a distributed memory system.
�erefore a simple example is included and demonstrates the general simulation approach and
gives an insight in the so�ware building process.
Simulating only a single compute tile is essentially an OpenRISC core plus memory and the

network adapter, where all I/O of the network adapter is not functional in this test case. It can
therefore only be used to simulate local so�ware.
You can �nd this example in $OPTIMSOC/examples/sim/compute_tile.
In addition to the SoC “hardware” (which, in this case, is simulated of course), you also

need so�ware that runs on the system. Our demonstration so�ware is available in an extra
repository:

git clone https :// github .com/ optimsoc /baremetal -apps
cd baremetal -apps

Build a simple “Hello World” example:

cd hello
make

You will then �nd the executable elf �le as hello/hello.elf. Furthermore some other �les
are built. �ey are essentially transformed versions of the ELF �le, i.e. the so�ware binary.

• hello.dis is the disassembly of the �le

• hello.bin is the elf representation of the binary �le

• hello.vmem is a textual copy of the binary �le

7

Now you have everything you need to run the hello world example on a simulated SoC
hardware:

$OPTIMSOC / examples /sim/ compute_tile / compute_tile_sim_singlecore --meminit
↪→ =hello.vmem

And you’ll get roughly this output:

TOP. tb_compute_tile . u_compute_tile . gen_cores [0]. u_core .u_cpu. bus_gen .
↪→ ibus_bridge : Wishbone bus IF is B3_REGISTERED_FEEDBACK

TOP. tb_compute_tile . u_compute_tile . gen_cores [0]. u_core .u_cpu. bus_gen .
↪→ dbus_bridge : Wishbone bus IF is B3_REGISTERED_FEEDBACK

[22, 0] Software reset
[63128 , 0] Terminated at address 0 x0000e958 (status :

↪→ 0)
- ../ src/ optimsoc_trace_monitor_trace_monitor / verilog / trace_monitor .sv

↪→ :89: Verilog $finish

Furthermore, you will �nd a �le called stdout.000 which shows the actual output:

OpTiMSoC trace_monitor stdout file
[TIME , CORE] MESSAGE
[39614 , 0] Hello World! Core 0 of 1 in tile 0, my absolute

↪→ core id is: 0
[48764 , 0] There are 1 compute tiles:
[57162 , 0] rank 0 is tile 0

Congratulations, you’ve ran your �rst OpTiMSoC system!

Note

If you are already familiar with embedded systems or microcontrollers, youmight wonder:
how did the printf() output from the so�ware get into the stdout.000 �le if there is
no UART or anything similar?

OpTiMSoC so�ware makes excessive use of a useful part of the OpenRISC ISA. �e
“no operation” instruction l.nop has a parameter K in assembly. �is can be used for
simulation purposes. It can be used for instrumentation, tracing or special purposes as
writing characters with minimal intrusion or simulation termination.

�e termination is forced with l.nop 0x1. �e instruction is observed and a trace
monitor terminates when it was observed at all cores (shortly a�er main returned).

With this method you can simply provide constants to your simulation environments.
For variables this method is extended by pu�ing data in further registers (o�en r3). �is
still is minimally intrusive and allows you to trace values. �e printf is also done that way
(see newlib):

void sim_putc (unsigned char c) {
asm("l.addi\tr3 ,%0 ,0": :"r" (c));
asm("l.nop %0": :"K" (NOP_PUTC));

}

8

�is function is called from printf as write function. �e trace monitor captures theses
characters and puts them to the stdout �le.

You can easily add your own “traces” using a macro de�ned in $OPTIMSOC/soc/sw/
include/baremetal/optimsoc-baremetal.h:

define OPTIMSOC_TRACE (id ,v) \
asm("l.addi\tr3 ,%0 ,0": :"r" (v) : "r3"); \
asm("l.nop %0": :"K" (id));

3.2 See the Waves

One major bene�t of simulating a SoC is the possibility to inspect every signal inside the hard-
ware design quite easily. When running a Verilator simulation, as we did in the previous step,
you can simply add the --vcd command line option. It instructs Verilator to write all signals
into a �le. You can then start a waveform viewer, like GTKWave to display it.

$OPTIMSOC / examples /sim/ compute_tile / compute_tile_sim_singlecore --meminit
↪→ =hello.vmem --vcd

�is command will run the hello world example like it did before, but this time Verilator
additionally writes a sim.vcd waveform �le. You can now view this �le.

gtkwave sim.vcd

�e screenshot in Figure 3.1 is similar to what you should see when running GTKWave.
On the le� side you �nd a hierarchy of all signals in the system. Add them to the wave

view and explore all internals of a working SoC at your �ngertips! Can you �nd the program
counter? �e instruction and data caches? �e branch predictor?

3.3 Going Multicore: Simulate a Multicore Compute Tile

Next you might want to build an actual multicore system. In a �rst step, you can just start
simulations of compute tiles with multiple cores.
Inside OPTIMSOC/examples/sim/compute_tile you’ll �nd a dual-core version and a

quad-core version of the system with just one compute tile that you just simulated in the
previous step. You can run those examples like you did before.
�e �rst thing you observe: the simulation runs become longer. A�er each run, inspect the

stdout.* �les.
Welcome to the multicore world!

9

Figure 3.1: Screenshot of GTKWave displaying some signals from a running compute tile dm
SoC.

10

3.4 Tiled Multicore SoC: Simulate a Small 2x2 Distributed
Memory System

Next we want to run an actual NoC-based tiled multicore system-on-chip, with the examples
you get system_2x2_cccc. �e nomenclature in all pre-packed systems �rst denotes the di-
mensions and then the instantiated tiles, here cccc as four compute tiles. In our pre-built
example, each compute tile has two CPU cores, meaning you have eight CPU cores in total.
Execute it again to get the hello world experience:

$OPTIMSOC / examples /sim/ system_2x2_cccc / system_2x2_cccc_sim_dualcore --
↪→ meminit =hello.vmem

In our simulation all cores in the four tiles run the same so�ware. Before you shout “that’s
boring:” You can still write di�erent code depending on which tile and core the so�ware is
executed. A couple of functions are useful for that:

• optimsoc_get_numct(): �e number of compute tiles in the system

• optimsoc_get_numtiles(): �e number of tiles (of any type) in the system

• optimsoc_get_ctrank(): Get the rank of this compute tile in this system. Essentially
this is just a number that uniquely identi�es a compute tile.

�ere are more useful utility functions like those available, �nd them in the �le $OPTIMSOC/
soc/sw/include/baremetal/optimsoc-baremetal.h.

A simple application that uses those functions to do message passing between the di�erent
tiles is hello_mpsimple. �is program uses the simple message passing facilities of the net-
work adapter to send messages. All cores send a message to core 0. If all messages have been
received, core 0 prints a message “Received all messages. Hello World!”.

start from the the baremetal -apps source code directory
cd hello_mpsimple
make
$OPTIMSOC / examples /sim/ system_2x2_cccc / system_2x2_cccc_sim_dualcore --

↪→ meminit = hello_mpsimple .vmem

Have a look what the so�ware does (you �nd the code in hello_mpsimple.c). Let’s �rst
check the output of core 0.

$> cat stdout .000
OpTiMSoC trace_monitor stdout file
[TIME , CORE] MESSAGE
[42844 , 0] Wait for 3 messages
[48734 , 0] Received all messages . Hello World!

11

Finally, let’s have a quick glance at a more realistic application: heat_mpsimple. You can
�nd it in the same place as the previous applications, hello and hello_mpsimple. �e ap-
plication calculates the heat distribution in a distributed manner. �e cores coordinate their
boundary regions by sending messages around.
Can you compile this application and run it? Don’t get nervous, the simulation can take

a couple of minutes to �nish. Have a look at the source code and try to understand what’s
going on. Also have a look at the stdout log �les. Core 0 will also print the complete heat
distribution at the end.

3.5 Observing So�ware During Execution: The Debug System

Up to now, you have seen the output of the so�ware that runs on your SoC. And you had a
look deep into the inner works of the SoC by looking at the waveforms.
In a real-world system, you need something in between: a way to observe the so�ware as it

executes on a chip, but without observing or understanding all the signals inside the hardware.
�is is what the debug system provides: hardware inside the chip which allows you to observe
what’s going on during so�ware execution.
OpTiMSoC also comes with an extensive debug system. In this section, we’ll have a look at

this system, how it works and how you can use it to debug your applications. But before diving
into the details, we’ll have a short discussion of the basics which are necessary to understand
the system.
Many developers know debugging from their daily work. Most of the time it involves run-

ning a program inside a debugger like GDB or Microso� Visual Studio, se�ing a breakpoint at
the right line of code, and stepping through the program from there on, running one instruction
(or one line of code) at a time.
�is technique is what we call run-control debugging. While it works great for single-

threaded programs, it cannot easily be applied to debugging parallel so�ware running on pos-
sibly heterogeneous many-core SoC. Instead, the debug support in OpTiMSoC mainly relies on
tracing. Tracing does not stop or otherwise in�uence the SoC itself; it only “records” what’s
going on during so�ware execution, and transmits this data to the developer.
�e debug system consists of two main parts: the hardware part runs on the OpTiMSoC

system itself and collects all data. �e other part runs on a developer’s PC (o�en also called
host PC) and controls the debugging process and displays the collected data.
A�er this introduction, let’s make use of the debug system to obtain various traces. Just like

in the previous examples, our SoC hardware is still running in Verilator. �is tutorial works best
if you have multiple terminal windows open at the same time, as we’ll need to have multiple
programs running at the same time.
So, open a new terminal (or a new tab inside your terminal), and start the simulation of the

SoC hardware.

$OPTIMSOC / examples /sim/ system_2x2_cccc / system_2x2_cccc_sim_dualcore_debug

You’ll see a lot of “So�ware reset” messages; that’s expected.
Now, open a second terminal (leave the �rst one running!) and type

12

opensocdebugd tcp

�is starts the “Open SoC Debug daemon.” Open SoC Debug (or short, OSD) is the name of
the debug infrastructure that’s included with OpTiMSoC. �e Open SoC Debug daemon is a
tool which connects to the debug system inside the SoC hardware and interacts with it. In our
case, since the SoC is running inside the Verilator simulation on the same PC, we use TCP to
connect the simulated hardware opensocdebugd. Later, if we run the hardware on an FPGA,
we’ll use UART or USB instead of TCP – but all the commands stay the same.
A�er some seconds, opensocdebugd will output something like this.

Open SoC Debug Daemon
Backend : tcp
System ID: 0001
22 debug modules found:

[0]: HOST
version : 0000

[1]: SCM
version : 0000

[2]: MAM
version : 0000
data width: 32, address width: 32
number of regions : 1

[0] base address : 0 x0000000000000000 , memory size: 33554432 Bytes
[3]: STM

version : 0000
xlen: 32

[4]: CTM
version : 0000
addr_width : 32
data_width : 32

[5]: STM
version : 0000
xlen: 32

[6]: CTM
version : 0000
addr_width : 32
data_width : 32

[7]: MAM
version : 0000
data width: 32, address width: 32
number of regions : 1

[0] base address : 0 x0000000000000000 , memory size: 33554432 Bytes
[8]: STM

version : 0000
xlen: 32

[9]: CTM
version : 0000
addr_width : 32
data_width : 32

[10]: STM
version : 0000

13

xlen: 32
[11]: CTM

version : 0000
addr_width : 32
data_width : 32

... (we 've skipped some output here) ...
Wait for connection

What you see is the output of the “debug system enumeration.” Internally, the debug system
consists of many modules. When �rst started, opensocdebugd �rst asks the SoC hardware
for all available modules and prints them out. Without going into too much details, the most
important ones are the following ones.

• �eMemory Access Module (MAM) allows us to write and read memories inside the SoC
from the host. We’ll make use of this in a bit to load our so�ware into the SoC.

• �e System Trace Module (STM) is mainly responsible to transmit the output of all
printf() calls to the host PC.

• �eCore Trace Module (CTM) observes the so�ware execution on the processor. We use
it mainly to generate a function trace, i.e. a list of all so�ware functions which have been
called.

Why is there not just one of each modules? We’re running a system with four tiles, each
with two CPU cores. �ere are so many modules, because some of the debug modules are part
of a tile, and some are a�ached to each CPU core. So this explains why there are four MAM
modules, and eight CTM and STM modules each.
Let’s go back to our terminals. Up to now we have two terminals open, let’s open a third

one. In here, we start osd-cli, a command line application that allows you to interact with
the SoC hardware.

osd -cli

osd-cli supports many commands, and the help command is probably a good starting
point.

osd > help
Available commands :

help Print this help
<cmd > help Print help for command
quit Exit the command line
reset Reset the system
start Start the processor cores
mem Access memory
ctm Configure core trace module
stm Configure software trace module
terminal Start terminal for device emulation module
wait Wait for given seconds

osd > mem help
Available subcommands :

14

help Print this help
test Run memory tests
loadelf Load an elf to memory

Now let’s run our hello world so�ware on the SoC.

• First, we reset and then halt all CPUs. �is gives us a “silent” system, i.e. nothing is
running and we can modify the memory without being disturbed by the CPUs.

osd > reset -halt

• Next, we load the ELF �le of the hello world program into the memory of compute tile
0. To do this, we tell the MAM module with ID 2 to write the �le into the memory. (See
the output of opensocdebugd for all IDs that are available.) A�er writing, the -verify
option instructs osd-cli to read back all memory content and check if the read data is
equal to the wri�en data. �is step is not strictly necessary, but is helpful to check that
the memory write was successful indeed.

osd > mem loadelf hello.elf 2 -verify
Verify : 1
Load program header 0
Load program header 1
Verify program header 0
Verify program header 1

• Before we start the system, we want to observe what’s going on when the so�ware is
executed. We therefore instruct the STM and CTM modules of core 0 to write log �les.
To the CTMwe also pass the ELF �le, i.e. the program that is executed. �e CTM can use
the information inside this �le to record not only the program counter that is executed,
but also tell you which function (as wri�en inside the C code) a program counter refers
to. �is makes the CTM logs much nicer to read (at least for humans).

osd > stm log stm000 .log 3
osd > ctm log ctm000 .log 4 hello.elf

• Finally, we are ready to start the system, i.e. lower the reset signal.

osd > start
osd > [STM 003] 004616 b5 Hello World! Core 0 of 2 in tile 0, my

↪→ absolute core id is: 0
[STM 003] 0046266 e There are 4 compute tiles:
[STM 003] 00463792 rank 0 is tile 0
[STM 003] 0046484 d rank 1 is tile 1
[STM 003] 00465918 rank 2 is tile 2
[STM 003] 004669 ea rank 3 is tile 3

15

Since we have wri�en our hello world program only to core 0, we only get the printf()
output from this core.

• Now that the so�ware has �nished, we can close the connection by typing

osd > quit

Remember that we instructed the STM and CTM modules to write log �les? Have a look at
the �les stm000.log and ctm000.log to �nd all STM and CTMmessages that were issued by
the system. If possible the modules already assemble them back together to be more useful to
the human user. For example, the STM creates the printf() output out of the trace messages
(and you see both inside the �le). �e CTM uses the passed ELF �le to resolve the function
names that you see in the log �le.

3.6 Automating System Interaction

In the previous section, you have manually typed commands into osd-cli to interact with
the debug system. We understand that this is something you don’t want to do all day. To
make things easier, our debug components come with a Python interface that you can use to
automate all the steps. To make it even more easy, you can use an example script that does
exactly what you just typed manually: load all memories of a system and start the CPUs. �e
script then waits for ten seconds before it closes the connection to the opensocdebugd. (If
your application runs longer than that adjust the script accordingly.)

only Python 2 is supported at the moment
python2 $OPTIMSOC /host/share/ opensocdebug / examples / runelf .py hello.elf

�is ends our experiments with SoCs running as Verilator simulation. In the next sections,
we’ll move to an FPGA board and see how we can run so�ware on that.

3.7 Our SoC on an FPGA

Welcome to the fun of real hardware! Before we can get started, you need to clarify some
prerequisites.

3.7.1 Prerequisites: FPGA board and Vivado

�is, of course, �rst means that you need borrow, buy or otherwise obtain an FPGA board.
In this tutorial, we use the Nexys 4 DDR board by Xilinx/Digilent. It’s not that expensive (of
course, depending on your �nancial situation) and widely available. If you need help obtaining
one, let us know – maybe we can help out in some way.
Additionally you need to download and install the Xilinx Vivado tool (the cost-freeWebPack

license is su�cient). We used the 2016.2 version when preparing this tutorial; we strongly
recommend you also use this exact version.

16

Once you have obtained the FPGA board, connect it to the PC on the “PROG UART” USB
connection. You don’t need to connect any additional power supply.

3.7.2 Programming the FPGA

With the board connected, we can program (or “�ash”) the FPGA with our hardware design,
the “bitstream.” �e OpTiMSoC release contains pre-built bitstreams for the single compute
tile system and a 2x2 system with four compute tiles, meaning we can start directly with pro-
gramming the FPGA.
To program the FPGA we’ll use Vivado.

• Open Vivado (e.g. by typing vivado into a terminal window)

• On the welcome screen, click on “Hardware Manager”

• Ensure that your Nexys4 DDR board is plugged into your PC and is turned on.

• Click on “Open Target” in the green bar on the top, and then on “Auto Connect”

• Now click on “Program Device” in the same green bar and select the only option
“xc7a100t 0” (that’s the FPGA on the board).

• In the dialog window, select the bitstream �le. We’ll start directly with the larger 2x2
system, you can �nd the bitstream in $OPTISMOC/examples/system_2x2_cccc_
nexys4ddr/system_2x2_cccc_nexys4ddr.bit.

• You can leave the other �eld “Debug probes �le” empty.

• Click on “Program” to �ash the bitstream onto the FPGA.

A�er a couple of seconds, your FPGA contains the SoC hardware and is ready to be used.

3.7.3 Connecting

In the previous tutorials, we have already seen the debug infrastructure and connected to it
over TCP. We now use the same tools to connect to our SoC, but this time we connect to the
FPGA using UART. Fortunately, you don’t need to connect any additional cables; the USB cable
that you just used to program the FPGA is also the serial connection.
First, check which serial port was assigned to the board. Usually the easiest way is to do a

ls /dev/ ttyUSB *

If you have only the Nexys 4 DDR board connected, you’ll see only one device, e.g.
/dev/ttyUSB0. Make note of this device name, and replace it accordingly in all the following
steps in this tutorial.

Just as before, we’ll need more than one terminal window. Open a �rst terminal and start
opensocdebugd (remember to replace the device with your device name).

17

opensocdebugd uart device =/ dev/ ttyUSB1 speed =12000000

�e output you see should be almost identical to what you’ve seen in Section 3.5, with one
change: the system you’re now using has just one CPU per compute tile, so only four cores in
total. As consequence, you see less CTM and STM modules.

3.7.4 Running So�ware

Now that you’ve connected to the system, can you run so�ware on it? Yes, you already know
how! Open a new terminal window, and use osd-cli or the Python script to �ash the memo-
ries with an ELF �le and run the system.
When you run so�ware, you’ll notice two things: �rst, the output is the same as you’ve

already seen when running the system in simulation. But: it’s much faster. �e FPGA runs at
50 MHz, which is still quite slow compared to current desktop processors, but still much faster
than the simulation.
�is concludes our tutorial session, and hands over to you: modify the so�ware as you wish,

program it again, analyze the simulations and explore your �rst multicore SoC.

18

4 Develop OpTiMSoC

A�er you haveworked through some, or even all, of the tutorials in the previous chapter, you’re
now ready to bring your own ideas to live using OpTiMSoC. �is chapter gives you a quick
introduction on how to setup your development environment, like editors and the revision
control system, and how to contribute back to the OpTiMSoC project.
We assumed in this whole tutorial that you are working on Linux. While it is certainly

possible to use Windows or OS X for development, we cannot provide help for those systems
and you’re on your own.

4.1 Building Hardware

When building so�ware, engineers have go�en used to tools like make, CMake and similar
build systems. Such build tools ensure that all dependencies of a so�ware project are met, and
then start the various tools (such as the compiler, linker, etc.) to produce the output �les, e.g.
the program binary. In the hardware world, no standard tool for this job exists. A new, but
very promising contestent in this sector is is FuseSoC.
FuseSoC allows developers to write core �les: short declarative �les in an INI-like format that

describe which components are required to build a hardware design. When you look around
in $OPTIMSOC/soc/hw you’ll �nd such core �les for all components that make up the SoC.
But the core �les not only describe the modules inside the SoC design, they are also used to
describe the toplevel SoC.
For example, let’s have a look at the �le $OPTIMSOC_SOURCE/examples/sim/compute_

tile/compute_tile_sim.core inside the OpTiMSoC source tree (it’s not installed!). In there
you �nd all dependencies that are needed to build the system with only one compute tile. You
also �nd the toplevel �les that are used to simulate the system in Verilator and in XSIM (the
Vivado built-in simulator).
�e great bene�t of using FuseSoC is that you can now simply compile and run the system

with one simple command.
Before we start, two notes:

• OpTiMSoC uses a slightly modi�ed version of FuseSoC. You can call it by running
optimsoc-fusesoc.

• We set an environment variable ($FUSESOC_CORES) during the installation that makes
FuseSoC �nd all OpTiMSoC hardware modules. You do not need to add a special con�g-
uration for this. However, the examples inside $OPTIMSOC_SOURCE are not part of this
search path.

19

• You can call optimsoc-fusesoc from any directory. We recommend not calling Fus-
eSoC from inside your source directory. (�is allows you to just delete the build folder
and retain a clean source folder.)

So let’s look at a couple of examples how to build a SoC hardware with fusesoc.

Note

All the examples require an OpTiMSoC source tree to be available at $OPTIMSOC_SOURCE.

1. Build and run a Verilator-based simulation of a single compute tile.

cd some/ directory
optimsoc - fusesoc --cores -root $OPTIMSOC_SOURCE / examples sim optimsoc

↪→ : examples : compute_tile_sim

2. Only build a Verilator simulation of a single compute tile

optimsoc - fusesoc --cores -root $OPTIMSOC_SOURCE / examples sim --build -
↪→ only optimsoc : examples : compute_tile_sim

3. Set the parameter NUM_CORES to 2 to create a system with two CPU cores inside the
compute tile. You can have a look inside the top-level source �le $OPTIMSOC_SOURCE/
examples/sim/compute_tile/tb_compute_tile.sv for other parameters that are
available.

optimsoc - fusesoc --cores -root $OPTIMSOC_SOURCE / examples sim --build -
↪→ only optimsoc : examples : compute_tile_sim --NUM_CORES 2

4. Synthesize a 2x2 system with four compute tiles for the Nexys 4 DDR board using Xilinx
Vivado. �is step requires Vivado to be installed and working, and a lot of time (approx.
30 minutes, depending on your machine).

optimsoc - fusesoc --cores -root $OPTIMSOC_SOURCE / examples build
↪→ optimsoc : examples : system_2x2_cccc_nexys4ddr

5. Now �ash the bitstream that the previous step generated to the FPGA.

optimsoc - fusesoc --cores -root $OPTIMSOC_SOURCE / examples pgm optimsoc
↪→ : examples : system_2x2_cccc_nexys4ddr

4.2 Choosing an Editor/IDE

When editing code, an editor or IDE usually comes handy. While there is clearly no “best”
or even “recommended” editor or IDE, we will present two or our choices here, together with
some se�ings that make working on OpTiMSoC a pleasant experience. Feel free to adapt these
recommendations to your personal preferences!

20

4.2.1 Eclipse

Eclipse gives you a nice and integrated development across the di�erent parts of the code
base by using a couple of plugins. But be aware, Eclipse likes memory and is not exactly
“lightweight”, but if you have enough memory available (in the area of 500 MB for Eclipse) it
can be a very powerful and productive choice.

Installation and Basic Setup

First of all, get Eclipse itself. Go to http://www.eclipse.org/downloads/ and get the
“Eclipse IDE for C/C++ Developers” package or install it from your distribution’s package man-
ager. All the following steps were tested with Eclipse Kepler (4.3).
Now start Eclipse and �rst go to Help → Check for Updates. Install all available updates.
For Verilog syntax highlighting we use a plugin called “VEditor”. Go to Help →

Install New So�ware… In the �eld Work with enter the URL of the installation site,
http://veditor.sourceforge.net/update. Now press the return key and a�er a couple
of seconds, the entry VEditor Plugin appears below. Select it and click on the Next bu�on until
the installation is �nished. To complete the process you need to restart Eclipse.
Every project has di�erent preferences regarding the styling of the code. �erefore every

editor can be con�gured to some extend. First, we’ll set the general se�ings for Eclipse, and
then for Verilog and C.
Start by clicking on Window → Preferences inside Eclipse. �ere, choose Editors → Text

Editors. You should set the following se�ings:

• Check Insert spaces for tabs

• Check Show print margin

• Set the Print margin column to 80

• Check Show line numbers

Just leave the other se�ings as they are, or change them to your liking.
For the Verilog se�ings, go to Verilog/VHDL Editor→ Code Style. �ere, select Space as Indent

Character and set the Indent Size to 3.
For the C style used in liboptimsochost and other libraries we have prepared a se�ings

�le. Go to C/C++ → Code Style → Forma�er and click on Import…, choose the se�ings �le
doc/resources/optimsoc-eclipse-cdt-codestyle.xml inside the OpTiMSoC source
tree. Now you should have a new pro�le “OpTiMSoC” in the list of pro�les. Choose this one
for all work on the C code.

Creating the OpTiMSoC HDL Project

Now that all the basic se�ings are in place, we can create the projects inside Eclipse. First, we
will create a project for editing the HDL (Verilog) code.
In the Project Explorer (on the le� side), right click and select New → Project…. A new dialog

window shows. In this window, select Verilog/VHDL → Verilog/VHDL project and click Next.

21

http://www.eclipse.org/downloads/

Now enter a project name, e.g. “OpTiMSoC”. Uncheck the option Use default location and click
on Browse to choose your OpTiMSoC source directory (the location where you cloned the Git
repository to).

�eOpTiMSoC source tree not only contains RTL code, but also the necessary so�ware com-
ponents like liboptimsochost and the OpTiMSoC GUI. �is code is be�er edited in a separate
project and should be excluded from the project you just created. To do that, choose Project →
Properties from the main menu. Navigate to Resource → Resource Filters and click on the Add…
bu�on. �ere, choose the following se�ings:

• Choose Exclude all in the group Filter type

• Choose Folders in the group Applies to

• Check All children (recursive)

• In the group File and Folder A�ributes select Project Relative Path matches src/sw.

Now click on OK to �nish editing the �lter.
�en repeat the steps above to create a new resource �lter but as path use src/sysc this

time.
A�er you’re done with the second �lter, click OK again to close the dialog.

Creating a C Project

Eclipse is also a great choice for editing C code. As an example, we’ll setup Eclipse for the
OpTiMSoC host library, liboptimsochost.
In the main menu, click on File → New → Project. A dialog window is shown. �ere,

nagivate to C/C++ → Make�le Project with Existing Code and click on the Next bu�on.
Type liboptimsochost as Project Name and click on Browse… to select the source
code location of the library. It should be inside your OpTiMSoC code in the folder
src/sw/host/liboptimsochost. Uncheck C++ in the Languages group and select GNU
Autotools Toolchain in the box below. Now click on Finish to close the dialog.
Before you start coding, double-check if the code style se�ings are correct. Select the newly

created liboptimsochost project from the Project Navigator on the le�, right-click and choose
Properties. Nagivate to C/C++ General → Forma�er and check if OpTiMSoC is selected as style.
If not, click on Enable project speci�c se�ings and choose OpTiMSoC from the list. (If there is no
such entry, go back to the basic Eclipse setup and import the style �le properly.)
You can use the Eclipse GUI to build and run liboptimsochost, but this feature is currently

not used by any of the developers. Instead, we only use Eclipse for code editing, and build and
debug the so�ware using the regular commands on the console.

4.2.2 Emacs

�is section will be added shortly.

22

4.2.3 Verilog-mode

Sometimes, writing Verilog means writing the same information twice in di�erent places of a
source �le, one example being the port of a module. To save you as developer some typing
time, a tool called “Verilog-mode” has been invented. It allows you to specify comments inside
your code where information should be placed, and this information is then calculated and
inserted automatically. For more information about what it is and how it works, see http:
//www.veripool.org/wiki/verilog-mode/.
Verilog-mode is used extensively throughout the project. Even though using it is not re-

quired (the sources can be edited and compiled without it just �ne), it will save you a lot of
time during development and is highly recommended.
Installation is rather easy, as it comes bundled with GNU Emacs. Simply install Emacs as

described above and you’re ready to go. To support our coding style, you will need to adjust
the Emacs con�guration (even though it is the Emacs con�guration, it also con�gures Verilog-
mode).
Open the �le ˜/.emacs and add the following lines at the end:

(add-hook 'verilog-mode-hook '(lambda ()
;; Don 't auto-insert spaces after ";"
(setq verilog-auto-newline nil)
;; Don 't indent with tabs!
(setq indent-tabs-mode nil)))

(add-hook 'verilog-mode-hook '(lambda ()
;; Remove any tabs from file when saving
(add-hook 'write-file-functions (lambda ()

(untabify (point-min) (point-max))
nil))))

If you also use Emacs as your code editor, Verilog-mode is already enabled and you can read
through the documentation to learn how to use it.

Verilog-mode in Eclipse

Even if you use Eclipse, you do not need to switch editors to get the bene�ts of Verilog-mode;
you can run Verilog-mode in batch mode to resolve all the AUTO comments. �is will require
some manual setup, but a�erwards it can be used quite easily.
First, you need to �gure out where your verilog-mode.el or verilog-mode.elc

�le is located. If you want to use the Verilog-mode which is part of your
Emacs installation, it is probably located somewhere in /usr/share/emacs, e.g.
/usr/share/emacs/24.3/lisp/progmodes/verilog-mode.elc on Ubuntu 14.04. You
can run

$> find /usr/share/emacs -name 'verilog -mode.el*'

to search for it. If you found it, write down the path as we’ll need it later. If you installed
Verilog-mode from source, just note the path where you put your verilog-mode.el �le (e.g.
somewhere in your home directory).

23

http://www.veripool.org/wiki/verilog-mode/
http://www.veripool.org/wiki/verilog-mode/
http://www.veripool.org/wiki/verilog-mode/Documentation

In Eclipse, we will setup Verilog-mode as “Builder”. To do so, click in the main menu on
Project → Properties and nagivate to Builders. �ere, click on the New… bu�on and select
Program as con�guration type in the shown dialog. A�er pressing OK, enter “verilog-mode”
into the �eld Name. In the Main tab, write /usr/bin/emacs into the �eld Location. Leave the
�eld Working Directory empty and enter the following string into the �eld Arguments:

--batch --no -site -file -u ${ env_var :USER}
-l /usr/share/emacs /24.3/ lisp/ progmodes /verilog -mode.elc
"${ selected_resource_loc }" -f verilog -auto -f save - buffer

Replace the path to the verilog-mode.el or verilog-mode.elc �le with your own path you
found out above.
Now, switch to the tab Refresh, check the box Refresh resources upon completion and select

�e selected resource. Since we don’t need to change anything in the last two tabs, you can now
close the dialog by clicking on the OK bu�on and on OK again to close the project properties
dialog.
To test if it all works, navigate to src/rtl/compute_tile_dm/verilog/compute_tile_dm.v

and change the word “Outputs” in the comment right at the beginning of the �le to something
else. �en press CTRL-B (or go to Project → Build All) and a�er a couple of seconds, you
should see the word “Outputs” restored and some output messages in the Console view at the
bo�om. Also check if there were no tabs inserted (e.g. at the instantiation of u_core0). If
there are tabs then you probably did not setup your ˜/.emacs �le correctly.

4.2.4 Qt Creator for GUI Development

Developing the OpTiMSoC GUI requires an IDE which understands the used Qt framework.
�e most popular choice among the developers is Qt Creator.
To start editing, open Qt Creator and click on File → Open File or Project. Now nagivate

to src/sw/host/optimsocgui inside your OpTiMSoC source directory and open the
�le CMakeLists.txt. In the following dialog you can specify a build directory (or just
leave the default). A�er clicking on Next, a dialog with the title Run CMake appears. Type
-DCMAKE_BUILD_TYPE=Debug into the �eld Arguments and click on the Run CMake bu�on.
CMake is now run and if everything works as expected you can click on Finish to close the
project creation wizzard and start hacking on the source code.

24

	Introduction
	Installation & Configuration
	Prerequisites
	Option 1: Install the OpTiMSoC binary distribution (recommended)
	Option 2: Build OpTiMSoC from sources
	Prerequisites
	Get the sources
	Build the code
	Install the code

	Tutorials
	Starting Small: Compute Tile and Embedded Software (Simulated)
	See the Waves
	Going Multicore: Simulate a Multicore Compute Tile
	Tiled Multicore SoC: Simulate a Small 2x2 Distributed Memory System
	Observing Software During Execution: The Debug System
	Automating System Interaction
	Our SoC on an FPGA
	Prerequisites: FPGA board and Vivado
	Programming the FPGA
	Connecting
	Running Software

	Develop OpTiMSoC
	Building Hardware
	Choosing an Editor/IDE
	Eclipse
	Emacs
	Verilog-mode
	Qt Creator for GUI Development

