
OpTiMSoC User Guide

June 7, 2016

Document Changes

2015.1

• Fresh restart with package-based installation (S. Wallentowitz)

• Update old tutorials (S. Wallentowitz)

• Extend tutorial for FPGA (P. Wagner and S. Wallentowitz)

June 20, 2013

• Add installation and con�guration description (S. Wallentowitz)

• Update old tutorials (S. Wallentowitz)

• Add host so�ware (GUI) in tutorials (S. Wallentowitz)

• Add development tutorials (P. Wagner)

January 28, 2013

• Initial version of the document

• First tutorial steps for distributed memory systems

OpTiMSoC Documentation Overview

�e OpTiMSOC documentation is organized in four di�erent categories:

User Guide �e User Guide describes the general usage of the OpTiMSoC elements in a tu-
torial style. It covers the basic building processes and how to get stu� running. �e
User Guide is related to releases and distributed via the website and can be built in the
repository.

API documentation �e so�ware components are documented using Doxygen1. �e gener-
ated API documentations serve the users when programming so�ware for OpTiMSoC.
�e API documentation is also related to releases and can be automatically generated in
the repository and are also distributed via the website. At the moment the following API
documentation is available:

• OpTiMSoC Baremetal Libraries API
• OpTiMSoC gzll Libraries API
• OpTiMSoC Host So�ware API
• OpTiMSoC SystemC Library

1http://www.doxygen.org

i

http://www.doxygen.org

Reference Manual �e Reference Manual covers all topics in detail. It gives a be�er insight
in how OpTiMSoC is organized and how things work. It primarily serves developers as
source of information when extending OpTiMSoC.

Technical Reports �e Technical Reports are released separately and cover implementation
details. �ey therefore serve as documentation of components and source of information
for developers. �ey do not only cover technical details butmost importantly also present
why something works as it does.

ii

Contents

1 Introduction 1

2 Installation & Configuration 3
2.1 Prerequisites . 3
2.2 Get OpTiMSoC –�ick Start . 3
2.3 Get OpTiMSoC – Build yourself . 4

2.3.1 Pre-requisites . 5
2.3.2 Get the sources . 5
2.3.3 Run installer . 5

3 Tutorials 6
3.1 Starting Small: Compute Tile and So�ware (Simulated) 6
3.2 Going Multicore: Simulate Multicore Compute Tiles 8
3.3 Tiled Manycore SoC: Simulate a Small 2x2 Distributed Memory System 8
3.4 �e Look Inside: Introducing the Debug System 9
3.5 Verilator: Compiled Verilog simulation . 10
3.6 Going to the FPGA: ZTEX Boards . 11

3.6.1 Prepare: Simulate the Complete System 11
3.6.2 Synthesis . 12
3.6.3 Testing on the FPGA . 13

4 Develop OpTiMSoC 15
4.1 Choosing an Editor/IDE . 15

4.1.1 Eclipse . 15
4.1.2 Emacs . 17
4.1.3 Verilog-mode . 17
4.1.4 Qt Creator for GUI Development . 19

iii

1 Introduction

Open Tiled Manycore System-on-Chip (OpTiMSoC) is library-based framework that allows
you to build you own Manycore. So called “Tiled Manycores” are based on a regular Network-
on-Chip to which di�erent tiles are connected. Such tiles can contain processing elements,
memory, I/O devices etc.
OpTiMSoC is based on LISNoC, an open source Network-on-Chip and other open source

hardware components. In future, this set of components will be continuously extended and
you can easily integrate your own components. A variety of target platforms, such as FPGA
boards, emulation platforms and simulations will be supported.
For a general introduction about the project goals and elements of OpTiMSoC please refer

to our permanently updated preprint on ArXiv.org1.

�is document documents the projects from a user point of view. Starting with the de-
scription of how to get and install OpTiMSoC it describes the di�erent kinds of simulation or
syntheses systems currently supported by OpTiMSoC in the style of step-by-step tutorials.
In the following, we will give you a short overview of the di�erent components that are part

of OpTiMSoC or other dependencies.

OpTiMSoC Toolchain

�e toolchain of OpTiMSoC currently consists of the standard OpenRISC crosscompiler and a
newlib libc port (based on the OpenRISC newlib) plus a few small utility programs and scripts.
You will need to have it installed in most cases as it is necessary to build all the so�ware

running on the OpTiMSoC systems.

SoC Libraries

�e system libraries provide all functionalities of the OpTiMSoC platforms to the applications.
�is includes hardware drivers, runtime support, communication APIs and task management
APIs.

RTL Simulation

In case you are developing hardware in OpTiMSoC, RTL simulation is the starting point of
development. Beside this, RTL simulation is used to execute small pieces of so�ware for testing
or development of drivers and the runtime system.
Unfortunately, we do not know of any high-quality open source RTL simulation tool, so that

we here rely on commercial EDA tools. At the moment this is Mentor’s Modelsim.

1http://arxiv.org/abs/1304.5081

1

http://arxiv.org/abs/1304.5081

Verilator

Verilator is an open source tool that compiles Verilog code to SystemC and allows users without
a commercial RTL simulator license to run system simulations.

Synthesis

Currently we focus on FPGA synthesis for Xilinx FPGA.�ere will always be a supported board
that can be used with the free Xilinx WebPack, but in general you will of course need a Xilinx
license for this.
Beside Xilinx tools, we also support Synopsys Synplify as this a more sophisticated synthesis

tool.

Host So�ware

Host so�ware is needed for control and diagnosis/debug of the running systems.

Host GUI

A graphical user interface provides easy control and observability of the running systems.

2

2 Installation & Configuration

Before you get started with OpTiMSoC you should notice that external tools and libraries might
be required that are in some cases proprietary and cost some money. Although OpTiMSoC is
developed at an university with access to many EDA tools, we aim to always provide tool �ows
and support for open and free tools, but especially when it comes to synthesis such alternatives
are even not available.

2.1 Prerequisites

�roughout this document some packages are required in your Linux distribution. OpTiMSoC
should principally work on all common Linux distributions. In case you encounter problems
in your system we highly encourage you to contact the OpTiMSoC maintainers to �x these
problems. Nevertheless, we recommend Ubuntu 12.04 or 14.04 LTS as development system
and can ensure OpTiMSoC will work on it as we also work on it. In the following we will refer
to Ubuntu/Debian commands to install packages, that will run under Ubuntu 12.04 and 14.04
LTS.
Independent of the OpTiMSoC components you plan to use, you will need some packages

to be installed:

sudo apt -get -y install git python build - essential automake autoconf

2.2 Get OpTiMSoC –�ick Start

�e most simple way to get started is with the release packages. You can �nd the OpTiMSoC
releases here: https://github.com/optimsoc/sources/releases. With the release you
can �nd the distribution packets that need to be extracted to /opt/optimsoc. �ere are two
packages: the base package contains the programs, libraries and tools to get started. �e
examples package contains prebuilt verilator simulations for the real quick start.

For example take the 2015.1 release and download both base and examples. �en create
the base folder and extract the package:

sudo mkdir /opt/ optimsoc
sudo chown $USER /opt/ optimsoc
tar -xzf optimsoc -2015.1 - base.tgz -C /opt/ optimsoc
tar -xzf optimsoc -2015.1 - examples .tgz -C /opt/ optimsoc

You can now use the installation a�er se�ing the environment with the pre-installed envi-
ronment source script:

3

https://github.com/optimsoc/sources/releases

source /opt/ optimsoc /2015.1/ setup.sh

We encourage you to put this line into your ˜/.bashrc.
Now you are near to get started, but you need some programs to build so�ware to run in

OpTiMSoC and execute the verilator-based simulations. �ose are: the or1k-elf-multicore
toolchain, SystemC and Verilator. All those tools are free, but are (except for an outdated
Verilator version) not part of the Linux package systems. Hence you need to built those tools
as described in the Reference Manual, or you can simply download some prebuilt-versions.
To do so simply run a script for your version:

wget https :// raw. githubusercontent .com/ optimsoc / prebuilts / master /optimsoc
↪→ -prebuilt - deploy .py

chmod a+x optimsoc -prebuilt - deploy .py
./ optimsoc -prebuilt - deploy -d /opt/ optimsoc systemc verilator or1kelf

You may of course leave out any of the tools if you already have it installed. Finally, you will
get another source script to set up the environment for the prebuilt tools:

source /opt/ optimsoc / setup_prebuilt .sh

You are now ready to go to the tutorials.

2.3 Get OpTiMSoC – Build yourself

You can also build OpTiMSoC from the sources. �is options usually becomes standard if you
start developing for or around OpTiMSoC. �e build is done from one git repository: https:
//github.com/optimsoc/sources.
It is generally a good idea to understand git, especially when you plan to contribute to Op-

TiMSoC. Nevertheless, we will give a more detailed explanation of how to get your personal
copies of OpTiMSoC and (potentially) update them.
�e start of a successful built is to install the tools Verilator, SystemC, and the

or1k-elf-multicore toolchain. �e most simple way is to start with the prebuilt tools as
described above, then set the environment for the tools.

Note

During the installation, you’ll frequently encounter three types of directories.

• �e source directory. �is is the place where the uncompiled source code �les are
stored. Usually, that is the folder that you cloned from the git repository.
�e $OPTIMSOC_SOURCE environment variable should point to the root of the source
directories.

• �e build or object directory. For di�erent components such a directory is used
to build the component. �e installer performs the build process in these directories

4

https://github.com/optimsoc/sources
https://github.com/optimsoc/sources

and you perform individual builds there if you develop for OpTiMSoC (for example:
if you develop the libraries).
Sometimes, this directory is equal to the source directory, but most of the time, we
create a new directory called build inside the source directory. Doing so has a
great bene�t: if something in the build process went wrong, you can simply delete
the build directory and start all over again.

• �e installation directory. �is is the target directory where results of the build
process are stored for further use. It is used by the installer or you when running
make install to store the �les generated by the build process. �e environment
variable $OPTIMSOC points to the root of the installation directory.

2.3.1 Pre-requisites

You will need some programs to build OpTiMSoC, e.g., on Ubuntu 14.04:

sudo apt -get install autoconf automake libtool tcl texlivetexlive -latex -
↪→ extra texlive -fonts -extra

2.3.2 Get the sources

Start with checking out the repository:

git clone https :// github .com/ optimsoc / sources .git optimsoc - sources
cd optimsoc - sources

2.3.3 Run installer

Now simply run the installer to install:

./ tools/ install .py -d /opt/ optimsoc /2015.1

5

3 Tutorials

�e best way to get started with OpTiMSoC a�er you’ve prepared your system as described
in the previous chapter is to follow some of our tutorials. �ey are wri�en with two goals
in mind: to introduce some of the basic concepts and nomenclature of manycore SoC, and to
show you how those are implemented and can be used in OpTiMSoC.
Some of the tutorials (especially the �rst ones) build on top of each other, so it’s recom-

mended to do them in order. Simply stop if you think you know enough to implement your
own ideas!

3.1 Starting Small: Compute Tile and So�ware (Simulated)

It is a good starting point to simulate a single compute tile of a distributed memory system.
�erefore a simple example is included and demonstrates the general simulation approach and
gives an insight in the so�ware building process.
Simulating only a single compute tile is essentially an OpenRISC core plus memory and the

network adapter, where all I/O of the network adapter is not functional in this test case. It can
therefore only be used to simulate local so�ware.
You can �nd this example in $OPTIMSC/examples/dm/compute_tile.
In default mode they start a server to connect the host so�ware to, but you can use the

parameter --standalone to run them in standalone. If you start the simulation now

$OPTIMSOC / examples /dm/ compute_tile / tb_compute_tile --standalone

you will get this output

%Error: ct.vmem :0: $readmem file not found
Aborting ...
Aborted (core dumped)

�e simulations always expect vmem �les that initialize the memories. �is needs to be
generated from the compiled source code.
Our demonstration so�ware is available in an extra repository:

git clone https :// github .com/ optimsoc /baremetal -apps
cd baremetal -apps

Build a simple “Hello World” example:

cd hello
make

6

You will then �nd the executable elf �le as hello/hello.elf. Furthermore some other �les
are build:

• hello.dis is the disassembly of the �le

• hello.bin is the elf representation of the binary �le

• hello.vmem is a textual copy of the binary �le

You can now run the example again, this time with a di�erent memory initialization �le:

$OPTIMSOC / examples /dm/ compute_tile / tb_compute_tile --standalone --meminit
↪→ =hello.vmem

the simulation should terminate with:

[157801] Core 0 has terminated
[157801] All cores terminated . Exiting ..

Furthermore, you will �nd a �le called stdout.000 which shows the actual output:

Hello World! Core 0 of 1 in tile 0, my absolute core id is: 0
There are 1 compute tiles:

rank 0 is tile 0

But how does the actual printf-output get there when there is no UART or similar?
OpTiMSoC so�ware makes excessive use of a useful part of the OpenRISC ISA. �e “no

operation” instruction l.nop has a parameter K in assembly. �is can be used for simulation
purposes. It can be used for instrumentation, tracing or special purposes as writing characters
with minimal intrusion or simulation termination.
�e termination is forced with l.nop 0x1. �e instruction is observed and a trace monitor

terminates when it was observed at all cores (shortly a�er main returned).
With this method you can simply provide constants to your simulation environments. For

variables this method is extended by pu�ing data in further registers (o�en r3). �is still is
minimally intrusive and allows you to trace values. �e printf is also done thatway (see newlib):

void sim_putc (unsigned char c) {
asm("l.addi\tr3 ,%0 ,0": :"r" (c));
asm("l.nop %0": :"K" (NOP_PUTC));

}

�is function is called from printf as write function. �e trace monitor captures theses char-
acters and puts them to the stdout �le.
You can easily add your own “traces” using a macro de�ned in baremetal-libs/src/

libbaremetal/include/optimsoc-baremetal.h:

define OPTIMSOC_TRACE (id ,v) \
asm("l.addi\tr3 ,%0 ,0": :"r" (v) : "r3"); \
asm("l.nop %0": :"K" (id));

7

3.2 Going Multicore: Simulate Multicore Compute Tiles

Next you might want to build an actual multicore system. In a �rst step, you can just start
simulations of compute tiles with multiple cores:

$OPTIMSOC / examples /dm/ compute_tile -dual/ tb_compute_tile --standalone --
↪→ meminit =hello.vmem

$OPTIMSOC / examples /dm/ compute_tile -quad/ tb_compute_tile --standalone --
↪→ meminit =hello.vmem

$OPTIMSOC / examples /dm/ compute_tile -octa/ tb_compute_tile --standalone --
↪→ meminit =hello.vmem

You can observe, the simulation runs become longer. A�er each run, inspect the stdout.*
�les.

3.3 Tiled Manycore SoC: Simulate a Small 2x2 Distributed
Memory System

Next we want to run an actual NoC-based tiled manycore system-on-chip, with the examples
you get system_2x2_cccc. �e nomenclature in all pre-packed systems �rst denotes the di-
mensions and then the instantiated tiles, here cccc as four compute tiles.
Execute it again to get the hello world experience:

$OPTIMSOC / examples /dm/ system_2x2_cccc / tb_system_2x2_cccc --standalone --
↪→ meminit =hello.vmem

In our simulation all cores in the four tiles run the same so�ware. Before you shout “that’s
boring:” You can still write di�erent code depending on which tile and core the so�ware is
executed. A couple of functions are useful for that:

• optimsoc_get_numct(): �e number of compute tiles in the system

• optimsoc_get_numtiles(): �e number of tiles (of any type) in the system

• optimsoc_get_ctrank(): Get the rank of this compute tile in this system. Essentially
this is just a number that uniquely identi�es a compute tile.

�ere are more useful utility functions like those available, �nd them in the �le
baremetal-libs/src/libbaremetal/include/optimsoc-baremetal.h.
A simple application that uses those functions to do message passing between the di�erent

tiles is hello_mpsimple. �is program uses the simple message passing facilities of the
network adapter to send messages. All cores send a message to core 0. If all messages have
been received, core 0 prints a message “Received all messages. Hello World!”.

cd ../ hello_mpsimple
make
$OPTIMSOC / examples /dm/ system_2x2_cccc / tb_system_2x2_cccc --standalone --

↪→ meminit = hello_mpsimple .vmem

8

Have a look what the so�ware does (you �nd the code in $OPTIMSOC_APPS/baremetal/
hello_mpsimple/hello_mpsimple.c). Let’s �rst check the output of core 0.

$> cat stdout .000
Wait for 3 messages
Received all messages . Hello World!

Finally, let’s have a quick glance at a more realistic application: heat_mpsimple. You can
�nd it in the same place as the previous applications, hello and hello_mpsimple. �e ap-
plication calculates the heat distribution in a distributed manner. �e cores coordinate their
boundary regions by sending messages around.
Can you compile this application and run it? Don’t get nervous, the simulation can take

a couple of minutes to �nish. Have a look at the source code and try to understand what’s
going on. Also have a look at the stdout log �les. Core 0 will also print the complete heat
distribution at the end.

3.4 The Look Inside: Introducing the Debug System

Note

�is and the following sections have not been tested for this release, and may most prob-
ably not run as described. But as a reference, they can serve you to be�er understand
OpTiMSoC.�ey will be rewri�en for the upcoming release. �anks for your understand-
ing!

In the previous tutorials you have seen some so�ware running on a simple OpTiMSoC sys-
tem. Until now, you have only seen the output of the applications, not how it works on the
inside.
�is problem is one of the major problems in embedded systems: you cannot easily look

inside (especially as soon as you run on real hardware as opposed to simulation). In more
technical terms, the system’s observability is limited. A common way to overcome this is to
add a debug and diagnosis infrastructure to the SoC which transfers data from the system to
the outside world, usually to a PC of a developer.
OpTiMSoC also comes with an extensive debug system. In this section, we’ll have a look at

this system, how it works and how you can use it to debug your applications. But before diving
into the details, we’ll have a short discussion of the basics which are necesssary to understand
the system.
Many developers know debugging from their daily work. Most of the time it involves run-

ning a program inside a debugger like GDB or Microso� Visual Studio, se�ing a breakpoint at
the right line of code, and stepping through the program from there on, running one instruction
(or one line of code) at a time.
�is technique is what we call run-control debugging. While it works great for single-

threaded programs, it cannot easily be applied to debugging parallel so�ware running on possi-

9

bly heterogenous many-core SoC. Instead, our solution is solely based on tracing, i.e. collecting
information from the system while it is running and then being able to look at this data later
to �gure out the root cause of a problem.
�e debug system consists of two main parts: the hardware part runs on the OpTiMSoC

system itself and collects all data. �e other part runs on a developer’s PC (o�en also called
host PC) and controls the debugging process and displays the collected data. Both parts are
connected using either a USB connection (e.g. when running on the ZTEX boards), or a TCP
connection (when running OpTiMSoC in simulations).

3.5 Verilator: Compiled Verilog simulation

At the moment running “verilated” simulations is the best supported way of observing the
system traces. We will therefore run the examples from before using a verilated simulation
and observing the system in the graphical user interface.
In the following we will have a look at building such a system and how to observe it with

the GUI. In tbench/verilator/dm you �nd systems identical to the RTL simulation. We will
directly start with the system_2x2_cccc. In the base folder you should simply make it:

$> make

�e command will �rst generate the verilated version of the 2x2 system. Finally it builds the
toplevel �les and links to tb_system_2x2_cccc and tb_system_2x2_cccc-vcd. �e la�er
generates a full VCD trace �le of the hardware, which is much slower and also easily takes up
tens of GB.
Similar to the steps described above you will need to build the so�ware, e.g., the heat exam-

ple. Again you need to link the vmem �le. Now start the simulation:

$> ./ tb_system_2x2_cccc

It will start a debug server and wait for connections:

SystemC 2.3.0 - ASI --- Feb 11 2013 12:54:17
Copyright (c) 1996 -2012 by all Contributors ,
ALL RIGHTS RESERVED

Listening on port 22000

In another console now start the OpTiMSoC GUI:

$> optimsocgui

In the �rst dialog window you need to set the debug backend to Simulation TCP Interface
and proceed then. A�er the GUI started you need to connect using Target System→Connect.
�e system view should change to a 2x2 system.
�e last step is to run the system by Target System→Start CPUs. �e execution trace on the

bo�om of the window will start showing execution sections and events. By moving the mouse

10

over the section you will �nd the description of the section. Similarly for the events you �nd a
short description of the event.

3.6 Going to the FPGA: ZTEX Boards

�e recommended platform for so�ware development or any other system which needs no I/O
is the ZTEX boards1. Various variants exist, the supported boards are the 1.15 series version b
and d, where the la�er is twice as large as the former and can therefore contain more processor
cores. �e 2x2 example works with both boards.

3.6.1 Prepare: Simulate the Complete System

Before we go to the actual board we want to simulate the entire system on the FPGA to see if
the debug system works correctly and the clocks works correct.
�e distribution therefore contains a SystemCmodule that functionally behaves like the USB

chip on the ZTEX boards. �e host tools can connect to the debug system via this module using
a TCP socket.
�e system can be found at tbench/rtl/dm/system_2x2_cccc_ztex. Build the system

running make. Before you simulate the system you will now need to provide a modelsim.ini
either globally or in the system’s folder that contains the Xilinx libraries. Once you have it,
you can start the system using

$> make sim - noninteractive

�e simulation will start and you can now connect to the system in a di�erent shell by using
the command line interface:

$> optimsoc_cli -bdbgnoc -oconn=tcp ,host=localhost ,port =23000

�e command line interface will connect to the system and enumerate all debug modules:

Connected to system .
System ID: 0 x0000ce75
Module summary :
addr. type version name
0x02 0x02 0x00 ITM
0x03 0x02 0x00 ITM
0x04 0x02 0x00 ITM
0x05 0x02 0x00 ITM
0x06 0x05 0x00 STM
0x07 0x05 0x00 STM
0x08 0x05 0x00 STM
0x09 0x05 0x00 STM
0x0a 0x07 0x00 MAM
0x0b 0x07 0x00 MAM
0x0c 0x07 0x00 MAM

1See http://www.ztex.de

11

http://www.ztex.de

0x0d 0x07 0x00 MAM

�e modules are the Instruction Trace Module (ITM), So�ware Trace Module (STM) andMem-
ory Access Module (MAM) for each of the four cores.
Before debugging now, you will need to build the so�ware as described before in the sw

subfolder. Once you have build hello_simplemp you can execute it in the simulation.
First you enter interactive mode:

$> optimsoc_cli -bdbgnoc -oconn=tcp ,host=localhost ,port =23000

A�er enumeration you will get an OpTiMSoC> shell. First you can initialize the memories:

OpTiMSoC > mem_init hello_simplemp .bin 0-3

Next you need to enable logging of the so�ware trace events to a �le:

OpTiMSoC > log_stm_trace strace

�en start the system:

OpTiMSoC > start

Let it run for a while (1 minute) and then leave the command line interface:

OpTiMSoC > quit

A�er that you will �nd the expected output of the trace events in strace.

3.6.2 Synthesis

Once you have checked the correct functionality of the system (or alter your extensions) you
can go over to system synthesis for the FPGA. At the moment we support the Synopsys FPGA
�ow (Synplify).
You can �nd the system synthesis in the folder syn/dm/system_2x2_cccc_ztex. A Make-

�le is used to build the systems.
To generate the system �rst create the project �le:

$> make synplify .prj

Now the Synplify project �le has been generated and you’re ready to start the synthesis.
If you want to have the output of the synthesis in a folder di�erent from your source

folder (the one where you just ran make in), you can set the environment variable
OPTIMSOC_SYN_OUTDIR to any path you like, e.g. put

export OPTIMSOC_SYN_OUTDIR =$HOME/syn

in your pro�le script (e.g. your ˜/.bashrc �le) and reload it.
Run the synthesis a�erwards (for the ZTEX 1.15b or d board):

12

$> make synplify_115b_ddr

Once the synthesis is �nished you can generate the bitstream:

$> make bitgen_115d_ddr

3.6.3 Testing on the FPGA

Now that you have generated a bitstream we’re ready to upload it to the FPGA. Connect the
ZTEX 1.15 board to your PC via USB.
If you run lsusb the board identi�es itself as:

Bus 001 Device 004: ID 221a:0100

�ere is no manufacturer or further information displayed. �e reason is, that OpTiMSoC
otherwise may require to buy a set of USB identi�ers. Instead, all ZTEX boards share the same
identi�er and the following command is used to �nd out details on the Firmware, Board and
Capabilities:

$> FWLoader -c -ii

To use the ZTEX boards as a user, it is recommended to add the following udev rule

SUBSYSTEM ==" usb", ATTR{ idVendor }=="221 a", ATTR{ idProduct }=="0100" , MODE
↪→ ="0666"

for example in /etc/udev/rules.d/60-usb.rules.
If you are running OpTiMSoC on the board for the �rst time you need to update the �rmware

on the board. To do that, switch to the folder src/sw/firmware/ztex_usbfpga_1_15_fx2_
fw in your OpTiMSoC source tree. Follow the instructions inside the provided README �le to
build and �ash the board with the required �rmware. All of this only needs to be done once
for each board (until the �rmware changes).
Now the board will identify itself using FWLoader -c -ii:

bus =001 device =4 (`004 ') ID =221a:100
Manufacturer =" TUM LIS" Product =" OpTiMSoC - ZTEX USB 1.15"

↪→ SerialNumber ="04 A32DBCFA "
productID =10.13.0.0 fwVer =0 ifVer =1
FPGA configured
Capabilities :

EEPROM read/ write
FPGA configuration
Flash memory support
High speed FPGA configuration
MAC EEPROM read/write

Everything ready to go? �en upload the bitstream to the FPGA by running

13

$> make flash_115d_ddr

in the same folder where you have been running make bitstream_... etc. in the previous
section. �e output should be something like

FWLoader -v 0x221a 0x100 -f -uf /[somepath]/ system_2x2_cccc_ztex .bit
FPGA configuration time: 194 ms

As the FPGA is now ready you can use the same method to connect to the FPGA and load
so�ware on it as you’ve done in the Section 3.6.1, just this time the connection paramters used
in optimsoc_cli are a bit di�erent.

Run

$> optimsoc_cli -i -bdbgnoc -oconn=usb

to connect to the FPGA board over USB. You should again be presented with a listing of all
available debug modules. Now you can continue just as you did before by calling mem_init to
load some so�ware onto the FPGA, etc.
Congratulations, you’ve run OpTiMSoC on real hardware for the �rst time! You can now

develop so�ware and explore OpTiMSoC. A handy utility is the python interface to the com-
mand line interface. Instead of running the interactive mode you can run the script interface
like:

$> optimsoc_cli -s <script .py > -bdbgnoc -oconn=usb

An example python script:

mem_init (2," hello_simple .bin")
log_stm_trace (" strace ")
start ()

You can also connect to the USB now using the GUI. Now you’re ready to explore and cus-
tomize OpTiMSoC for yourself. Have fun!

14

4 Develop OpTiMSoC

A�er you haveworked through some, or even all, of the tutorials in the previous chapter, you’re
now ready to bring your own ideas to live using OpTiMSoC. �is chapter gives you a quick
introduction on how to setup your development environment, like editors and the revision
control system, and how to contribute back to the OpTiMSoC project.
We assumed in this whole tutorial that you are working on Linux. While it is certainly

possible to use Windows or OS X for development, we cannot provide help for those systems
and you’re on your own.

4.1 Choosing an Editor/IDE

When editing code, an editor or IDE usually comes handy. While there is clearly no “best”
or even “recommended” editor or IDE, we will present two or our choices here, together with
some se�ings that make working on OpTiMSoC a pleasant experience. Feel free to adapt these
recommendations to your personal preferences!

4.1.1 Eclipse

Eclipse gives you a nice and integrated development across the di�erent parts of the code
base by using a couple of plugins. But be aware, Eclipse likes memory and is not exactly
“lightweight”, but if you have enough memory available (in the area of 500 MB for Eclipse) it
can be a very powerful and productive choice.

Installation and Basic Setup

First of all, get Eclipse itself. Go to http://www.eclipse.org/downloads/ and get the
“Eclipse IDE for C/C++ Developers” package or install it from your distribution’s package man-
ager. All the following steps were tested with Eclipse Kepler (4.3).
Now start Eclipse and �rst go to Help → Check for Updates. Install all available updates.
For Verilog syntax highlighting we use a plugin called “VEditor”. Go to Help →

Install New So�ware… In the �eld Work with enter the URL of the installation site,
http://veditor.sourceforge.net/update. Now press the return key and a�er a couple
of seconds, the entry VEditor Plugin appears below. Select it and click on the Next bu�on until
the installation is �nished. To complete the process you need to restart Eclipse.
Every project has di�erent preferences regarding the styling of the code. �erefore every

editor can be con�gured to some extend. First, we’ll set the general se�ings for Eclipse, and
then for Verilog and C.

15

http://www.eclipse.org/downloads/

Start by clicking on Window → Preferences inside Eclipse. �ere, choose Editors → Text
Editors. You should set the following se�ings:

• Check Insert spaces for tabs

• Check Show print margin

• Set the Print margin column to 80

• Check Show line numbers

Just leave the other se�ings as they are, or change them to your liking.
For the Verilog se�ings, go to Verilog/VHDL Editor→ Code Style. �ere, select Space as Indent

Character and set the Indent Size to 3.
For the C style used in liboptimsochost and other libraries we have prepared a se�ings

�le. Go to C/C++ → Code Style → Forma�er and click on Import…, choose the se�ings �le
doc/resources/optimsoc-eclipse-cdt-codestyle.xml inside the OpTiMSoC source
tree. Now you should have a new pro�le “OpTiMSoC” in the list of pro�les. Choose this one
for all work on the C code.

Creating the OpTiMSoC HDL Project

Now that all the basic se�ings are in place, we can create the projects inside Eclipse. First, we
will create a project for editing the HDL (Verilog) code.
In the Project Explorer (on the le� side), right click and select New → Project…. A new dialog

window shows. In this window, select Verilog/VHDL → Verilog/VHDL project and click Next.
Now enter a project name, e.g. “OpTiMSoC”. Uncheck the option Use default location and click
on Browse to choose your OpTiMSoC source directory (the location where you cloned the Git
repository to).

�eOpTiMSoC source tree not only contains RTL code, but also the necessary so�ware com-
ponents like liboptimsochost and the OpTiMSoC GUI. �is code is be�er edited in a separate
project and should be excluded from the project you just created. To do that, choose Project →
Properties from the main menu. Navigate to Resource → Resource Filters and click on the Add…
bu�on. �ere, choose the following se�ings:

• Choose Exclude all in the group Filter type

• Choose Folders in the group Applies to

• Check All children (recursive)

• In the group File and Folder A�ributes select Project Relative Path matches src/sw.

Now click on OK to �nish editing the �lter.
�en repeat the steps above to create a new resource �lter but as path use src/sysc this

time.
A�er you’re done with the second �lter, click OK again to close the dialog.

16

Creating a C Project

Eclipse is also a great choice for editing C code. As an example, we’ll setup Eclipse for the
OpTiMSoC host library, liboptimsochost.
In the main menu, click on File → New → Project. A dialog window is shown. �ere,

nagivate to C/C++ → Make�le Project with Existing Code and click on the Next bu�on.
Type liboptimsochost as Project Name and click on Browse… to select the source
code location of the library. It should be inside your OpTiMSoC code in the folder
src/sw/host/liboptimsochost. Uncheck C++ in the Languages group and select GNU
Autotools Toolchain in the box below. Now click on Finish to close the dialog.
Before you start coding, double-check if the code style se�ings are correct. Select the newly

created liboptimsochost project from the Project Navigator on the le�, right-click and choose
Properties. Nagivate to C/C++ General → Forma�er and check if OpTiMSoC is selected as style.
If not, click on Enable project speci�c se�ings and choose OpTiMSoC from the list. (If there is no
such entry, go back to the basic Eclipse setup and import the style �le properly.)
You can use the Eclipse GUI to build and run liboptimsochost, but this feature is currently

not used by any of the developers. Instead, we only use Eclipse for code editing, and build and
debug the so�ware using the regular commands on the console.

4.1.2 Emacs

�is section will be added shortly.

4.1.3 Verilog-mode

Sometimes, writing Verilog means writing the same information twice in di�erent places of a
source �le, one example being the port of a module. To save you as developer some typing
time, a tool called “Verilog-mode” has been invented. It allows you to specify comments inside
your code where information should be placed, and this information is then calculated and
inserted automatically. For more information about what it is and how it works, see http:
//www.veripool.org/wiki/verilog-mode/.

Verilog-mode is used extensively throughout the project. Even though using it is not re-
quired (the sources can be edited and compiled without it just �ne), it will save you a lot of
time during development and is highly recommended.
Installation is rather easy, as it comes bundled with GNU Emacs. Simply install Emacs as

described above and you’re ready to go. To support our coding style, you will need to adjust
the Emacs con�guration (even though it is the Emacs con�guration, it also con�gures Verilog-
mode).
Open the �le ˜/.emacs and add the following lines at the end:

(add-hook 'verilog-mode-hook '(lambda ()
;; Don 't auto-insert spaces after ";"
(setq verilog-auto-newline nil)
;; Don 't indent with tabs!
(setq indent-tabs-mode nil)))

(add-hook 'verilog-mode-hook '(lambda ()

17

http://www.veripool.org/wiki/verilog-mode/
http://www.veripool.org/wiki/verilog-mode/

;; Remove any tabs from file when saving
(add-hook 'write-file-functions (lambda ()

(untabify (point-min) (point-max))
nil))))

If you also use Emacs as your code editor, Verilog-mode is already enabled and you can read
through the documentation to learn how to use it.

Verilog-mode in Eclipse

Even if you use Eclipse, you do not need to switch editors to get the bene�ts of Verilog-mode;
you can run Verilog-mode in batch mode to resolve all the AUTO comments. �is will require
some manual setup, but a�erwards it can be used quite easily.
First, you need to �gure out where your verilog-mode.el or verilog-mode.elc

�le is located. If you want to use the Verilog-mode which is part of your
Emacs installation, it is probably located somewhere in /usr/share/emacs, e.g.
/usr/share/emacs/24.3/lisp/progmodes/verilog-mode.elc on Ubuntu 14.04. You
can run

$> find /usr/share/emacs -name 'verilog -mode.el*'

to search for it. If you found it, write down the path as we’ll need it later. If you installed
Verilog-mode from source, just note the path where you put your verilog-mode.el �le (e.g.
somewhere in your home directory).
In Eclipse, we will setup Verilog-mode as “Builder”. To do so, click in the main menu on

Project → Properties and nagivate to Builders. �ere, click on the New… bu�on and select
Program as con�guration type in the shown dialog. A�er pressing OK, enter “verilog-mode”
into the �eld Name. In the Main tab, write /usr/bin/emacs into the �eld Location. Leave the
�eld Working Directory empty and enter the following string into the �eld Arguments:

--batch --no -site -file -u ${ env_var :USER}
-l /usr/share/emacs /24.3/ lisp/ progmodes /verilog -mode.elc
"${ selected_resource_loc }" -f verilog -auto -f save - buffer

Replace the path to the verilog-mode.el or verilog-mode.elc �le with your own path you
found out above.
Now, switch to the tab Refresh, check the box Refresh resources upon completion and select

�e selected resource. Since we don’t need to change anything in the last two tabs, you can now
close the dialog by clicking on the OK bu�on and on OK again to close the project properties
dialog.
To test if it all works, navigate to src/rtl/compute_tile_dm/verilog/compute_tile_dm.v

and change the word “Outputs” in the comment right at the beginning of the �le to something
else. �en press CTRL-B (or go to Project → Build All) and a�er a couple of seconds, you
should see the word “Outputs” restored and some output messages in the Console view at the
bo�om. Also check if there were no tabs inserted (e.g. at the instantiation of u_core0). If
there are tabs then you probably did not setup your ˜/.emacs �le correctly.

18

http://www.veripool.org/wiki/verilog-mode/Documentation

4.1.4 Qt Creator for GUI Development

Developing the OpTiMSoC GUI requires an IDE which understands the used Qt framework.
�e most popular choice among the developers is Qt Creator.
To start editing, open Qt Creator and click on File → Open File or Project. Now nagivate

to src/sw/host/optimsocgui inside your OpTiMSoC source directory and open the
�le CMakeLists.txt. In the following dialog you can specify a build directory (or just
leave the default). A�er clicking on Next, a dialog with the title Run CMake appears. Type
-DCMAKE_BUILD_TYPE=Debug into the �eld Arguments and click on the Run CMake bu�on.
CMake is now run and if everything works as expected you can click on Finish to close the
project creation wizzard and start hacking on the source code.

19

	Introduction
	Installation & Configuration
	Prerequisites
	Get OpTiMSoC – Quick Start
	Get OpTiMSoC – Build yourself
	Pre-requisites
	Get the sources
	Run installer

	Tutorials
	Starting Small: Compute Tile and Software (Simulated)
	Going Multicore: Simulate Multicore Compute Tiles
	Tiled Manycore SoC: Simulate a Small 2x2 Distributed Memory System
	The Look Inside: Introducing the Debug System
	Verilator: Compiled Verilog simulation
	Going to the FPGA: ZTEX Boards
	Prepare: Simulate the Complete System
	Synthesis
	Testing on the FPGA

	Develop OpTiMSoC
	Choosing an Editor/IDE
	Eclipse
	Emacs
	Verilog-mode
	Qt Creator for GUI Development

